Pleiotropy Structures Plant Height and Seed Weight Scaling in Barley despite Long History of Domestication and Breeding Selection

Author:

He Tianhua1,Angessa Tefera Tolera1,Li Chengdao12

Affiliation:

1. Western Crop Genetics Alliance, Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia

2. Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia

Abstract

Size scaling describes the relative growth rates of different body parts of an organism following a positive correlation. Domestication and crop breeding often target the scaling traits in the opposite directions. The genetic mechanism of the size scaling influencing the pattern of size scaling remains unexplored. Here, we revisited a diverse barley ( Hordeum vulgare L.) panel with genome-wide single-nucleotide polymorphisms (SNPs) profile and the measurement of their plant height and seed weight to explore the possible genetic mechanisms that may lead to a correlation of the two traits and the influence of domestication and breeding selection on the size scaling. Plant height and seed weight are heritable and remain positively correlated in domesticated barley regardless of growth type and habit. Genomic structural equation modeling systematically evaluated the pleiotropic effect of individual SNP on the plant height and seed weight within a trait correlation network. We discovered seventeen novel SNPs (quantitative trait locus) conferring pleiotropic effect on plant height and seed weight, involving genes with function in diverse traits related to plant growth and development. Linkage disequilibrium decay analysis revealed that a considerable proportion of genetic markers associated with either plant height or seed weight are closely linked in the chromosome. We conclude that pleiotropy and genetic linkage likely form the genetic bases of plant height and seed weight scaling in barley. Our findings contribute to understanding the heritability and genetic basis of size scaling and open a new venue for seeking the underlying mechanism of allometric scaling in plants.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3