Solving Strength–Toughness Dilemma in Superhard Transition-Metal Diborides via a Distinct Chemically Tuned Solid Solution Approach

Author:

Gu Xinlei1,Liu Chang2,Gao Xinxin1,Zhang Kan1,Zheng Weitao1,Chen Changfeng3

Affiliation:

1. State Key Laboratory of Superhard Materials, Department of Materials Science and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012, China.

2. International Center for Computational Methods & Software, College of Physics, Jilin University, Changchun 130012, China.

3. Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA.

Abstract

Solid solution strengthening enhances hardness of metals by introducing solute atoms to create local distortions in base crystal lattice, which impedes dislocation motion and plastic deformation, leading to increased strength but reduced ductility and toughness. In sharp contrast, superhard materials comprising covalent bonds exhibit high strength but low toughness via a distinct mechanism dictated by brittle bond deformation, showcasing another prominent scenario of classic strength–toughness tradeoff dilemma. Solving this less explored and understood problem presents a formidable challenge that requires a viable strategy of tuning main load-bearing bonds in these strong but brittle materials to achieve concurrent enhancement of the peak stress and related strain range. Here, we demonstrate a chemically tuned solid solution approach that simultaneously enhances hardness and toughness of superhard transition-metal diboride Ta 1− x Zr x B 2 . This striking phenomenon is achieved by introducing solute atom Zr that has lower electronegativity than solvent atom Ta to reduce the charge depletion on the main load-bearing B–B bonds during indentation, leading to prolonged deformation that gives rise to notably higher strain range and the corresponding peak stress. This finding highlights the crucial role of properly matched contrasting relative electronegativity of solute and solvent atoms in creating concurrent strengthening and toughening and opens a promising avenue for rational design of enhanced mechanical properties in a large class of transition-metal borides. This strategy of concurrent strength–toughness optimization via solute-atom-induced chemical tuning of the main load-bearing bonding charge is expected to work in broader classes of materials, such as nitrides and carbides.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3