Resolving the hardness–toughness trade‐off dilemma of metal/ceramic multilayer films by introducing gradient structure

Author:

Zhang Wentao1,Wang Kaiwen1,Zhang Rui1,Gu Xinlei1,Pan Jingjie1,Wu Zhongzhen2,Zhang Xiyao3,Mao Wen1,Zhang Kan14ORCID

Affiliation:

1. State Key Laboratory of Superhard Materials, Department of Materials Science and Key Laboratory of Automobile Materials, MOE Jilin University Changchun China

2. School of Advanced Materials Peking University Shenzhen Graduate School Shenzhen China

3. Nano and Advanced Materials Institute Hong Kong University of Science and Technology Hong Kong Hong Kong

4. International Center of Future Science Jilin University Changchun China

Abstract

AbstractEqual‐period modulated metal/ceramic multilayers have shown promise in enhancing the toughness of ceramic thin films. However, this toughness enhancement typically comes at the sacrifice of hardness, limiting their potential applications. To tackle this issue, this study designed and fabricated two gradient‐structured multilayer variations using Ta/TaB2: one with a higher ceramic layer fraction near the surface (M2) and the other with a converse structure (M3). A conventional equal modulation period Ta/TaB2 multilayer film (M1) served as a reference. M2 exhibited superior performance, with a 30% hardness increase and significant toughness enhancement compared to M1. Conversely, M3 experienced failure due to excessive thermal stress from its unique gradient structure. Finite element simulations revealed that M2's structure could alleviate in‐plane stress and enhance loading uniformity, thus enhancing the film's toughness. These findings suggest that a well‐designed gradient structure holds promise for concurrently improving the hardness and toughness of metal/ceramic multilayer films.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3