Engineering of the AAV-Compatible Hair Cell-Specific Small-Size Myo15 Promoter for Gene Therapy in the Inner Ear

Author:

Hu Shao Wei123,Lv Jun123,Wang Zijing123,Tang Honghai123,Wang Hui123,Wang Fang123,Wang Daqi123,Zhang Juan123,Zhang Longlong123,Cao Qi123,Chen Yuxin123,Gao Ziwen123,Han Yu123,Wang Wuqing123,Li Geng-lin123,Shu Yilai123ORCID,Li Huawei123

Affiliation:

1. ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.

2. Institute of Biomedical Science, Fudan University, Shanghai, 200032, China.

3. NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China.

Abstract

Adeno-associated virus (AAV)-mediated gene therapy is widely applied to treat numerous hereditary diseases in animal models and humans. The specific expression of AAV-delivered transgenes driven by cell type-specific promoters should further increase the safety of gene therapy. However, current methods for screening cell type-specific promoters are labor-intensive and time-consuming. Herein, we designed a “multiple vectors in one AAV” strategy for promoter construction in vivo. Through this strategy, we truncated a native promoter for Myo15 expression in hair cells (HCs) in the inner ear, from 1,611 bp down to 1,157 bp, and further down to 956 bp. Under the control of these 2 promoters, green fluorescent protein packaged in AAV-PHP.eB was exclusively expressed in the HCs. The transcription initiation ability of the 2 promoters was further verified by intein-mediated otoferlin recombination in a dual-AAV therapeutic system. Driven by these 2 promoters, human otoferlin was selectively expressed in HCs, resulting in the restoration of hearing in treated Otof −/− mice for at least 52 weeks. In summary, we developed an efficient screening strategy for cell type-specific promoter engineering and created 2 truncated Myo15 promoters that not only restored hereditary deafness in animal models but also show great potential for treating human patients in future.

Funder

National Science Fund for Distinguished Young Scholars

Science and Technology Commission of Shanghai Municipality

Ministry of Science and Technology of the People's Republic of China

Innovative Research Group Project of the National Natural Science Foundation of China

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Shanghai Municipal Health Commission

Shanghai Municipal Education Commission

Shanghai Shuguang Program

Fudan University

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3