Microsecond-Scale Transient Thermal Sensing Enabled by Flexible Mo 1−x W x S 2 Alloys

Author:

Li Weiwei123,Kong Lingyan1,Xu Manzhang1,Gao Jiuwei1,Luo Lei1,Li Yingzhe1,Wang Kexin1,Zhou Yilin1,Li Lei1,Yuan Wei 1,Zhang Xiaoshan1,Zhao Ruoqing1,Chen Mengdi1,Yan Yuting1,Luo Xiaoguang1,Dai Zhaohe4,Zheng Lu1,Wang Xuewen123ORCID,Huang Wei12536

Affiliation:

1. Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China.

2. Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China.

3. State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.

4. Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.

5. MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi’an, 710072, China.

6. Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China.

Abstract

Real-time thermal sensing through flexible temperature sensors in extreme environments is critically essential for precisely monitoring chemical reactions, propellant combustions, and metallurgy processes. However, despite their low response speed, most existing thermal sensors and related sensing materials will degrade or even lose their sensing performances at either high or low temperatures. Achieving a microsecond response time over an ultrawide temperature range remains challenging. Here, we design a flexible temperature sensor that employs ultrathin and consecutive Mo 1− x W x S 2 alloy films constructed via inkjet printing and a thermal annealing strategy. The sensing elements exhibit a broad work range (20 to 823 K on polyimide and 1,073 K on flexible mica) and a record-low response time (about 30 μs). These properties enable the sensors to detect instantaneous temperature variations induced by contact with liquid nitrogen, water droplets, and flames. Furthermore, a thermal sensing array offers the spatial mapping of arbitrary shapes, heat conduction, and cold traces even under bending deformation. This approach paves the way for designing unique sensitive materials and flexible sensors for transient sensing under harsh conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3