Deep-Learning-Assisted Underwater 3D Tactile Tensegrity

Author:

Xu Peng1,Zheng Jiaxi1,Liu Jianhua1,Liu Xiangyu1,Wang Xinyu1,Wang Siyuan1,Guan Tangzhen1,Fu Xianping2,Xu Minyi1,Xie Guangming3,Wang Zhong Lin45

Affiliation:

1. Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian 116026, China.

2. School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China.

3. Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing 100871, China.

4. Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100871, China.

5. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.

Abstract

The growth of underwater robotic applications in ocean exploration and research has created an urgent need for effective tactile sensing. Here, we propose an underwater 3-dimensional tactile tensegrity (U3DTT) based on soft self-powered triboelectric nanogenerators and deep-learning-assisted data analytics. This device can measure and distinguish the magnitude, location, and orientation of perturbations in real time from both flow field and interaction with obstacles and provide collision protection for underwater vehicles operation. It is enabled by the structure that mimics terrestrial animals’ musculoskeletal systems composed of both stiff bones and stretchable muscles. Moreover, when successfully integrated with underwater vehicles, the U3DTT shows advantages of multiple degrees of freedom in its shape modes, an ultrahigh sensitivity, and fast response times with a low cost and conformability. The real-time 3-dimensional pose of the U3DTT has been predicted with an average root-mean-square error of 0.76 in a water pool, indicating that this developed U3DTT is a promising technology in vehicles with tactile feedback.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3