Causal Inference Meets Deep Learning: A Comprehensive Survey

Author:

Jiao Licheng1ORCID,Wang Yuhan1ORCID,Liu Xu1ORCID,Li Lingling1,Liu Fang1,Ma Wenping1,Guo Yuwei1,Chen Puhua1,Yang Shuyuan1,Hou Biao1

Affiliation:

1. The School of Artificial Intelligence, Xidian University, Xi’an, China.

Abstract

Deep learning relies on learning from extensive data to generate prediction results. This approach may inadvertently capture spurious correlations within the data, leading to models that lack interpretability and robustness. Researchers have developed more profound and stable causal inference methods based on cognitive neuroscience. By replacing the correlation model with a stable and interpretable causal model, it is possible to mitigate the misleading nature of spurious correlations and overcome the limitations of model calculations. In this survey, we provide a comprehensive and structured review of causal inference methods in deep learning. Brain-like inference ideas are discussed from a brain-inspired perspective, and the basic concepts of causal learning are introduced. The article describes the integration of causal inference with traditional deep learning algorithms and illustrates its application to large model tasks as well as specific modalities in deep learning. The current limitations of causal inference and future research directions are discussed. Moreover, the commonly used benchmark datasets and the corresponding download links are summarized.

Funder

the Joint Funds of the National Natural Science Foundation of China

the National Natural Science Foundation of China

the 111 Project, the Program for Cheung Kong Scholars and Innovative Research Team in University

the Science and Technology Innovation Project from the Chinese Ministry of Education, the Key Research and Development Program in Shaanxi Province of China

the China Postdoctoral Fund

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3