Improved Fine-Scale Tropical Forest Cover Mapping for Southeast Asia Using Planet-NICFI and Sentinel-1 Imagery

Author:

Yang Feng1,Jiang Xin1,Ziegler Alan D.2,Estes Lyndon D.3,Wu Jin45,Chen Anping6,Ciais Philippe7,Wu Jie1,Zeng Zhenzhong1ORCID

Affiliation:

1. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

2. Faculty of Fisheries Technology and Aquatic Resources, Mae Jo University, Chiang Mai, Thailand.

3. Graduate School of Geography, Clark University, Worcester, MA, USA.

4. School for Biological Sciences and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China.

5. State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.

6. Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA.

7. Laboratoire des Sciences du Climat et de l’Environnement, UMR 1572 CEA-CNRS-UVSQ, Gif-sur-Yvette, France.

Abstract

The accuracy of existing forest cover products typically suffers from “rounding” errors arising from classifications that estimate the fractional cover of forest in each pixel, which often exclude the presence of large, isolated trees and small or narrow forest clearings, and is primarily attributable to the moderate resolution of the imagery used to make maps. However, the degree to which such high-resolution imagery can mitigate this problem, and thereby improve large-area forest cover maps, is largely unexplored. Here, we developed an approach to map tropical forest cover at a fine scale using Planet and Sentinel-1 synthetic aperture radar (SAR) imagery in the Google Earth Engine platform and used it to map all of Southeastern Asia’s forest cover. The machine learning approach, based on the Random Forests models and trained and validated using a total of 37,345 labels collected from Planet imagery across the entire region, had an accuracy of 0.937 and an F1 score of 0.942, while a version based only on Planet imagery had an accuracy of 0.908 and F1 of 0.923. We compared the accuracy of our resulting maps with 5 existing forest cover products derived from medium-resolution optical-only or combined optical-SAR approaches at 3,000 randomly selected locations. We found that our approach overall achieved higher accuracy and helped minimize the rounding errors commonly found along small or narrow forest clearings and deforestation frontiers where isolated trees are common. However, the forest area estimates varied depending on topographic location and showed smaller differences in highlands (areas >300 m above sea level) but obvious differences in complex lowland landscapes. Overall, the proposed method shows promise for monitoring forest changes, particularly those caused by deforestation frontiers. Our study also represents one of the most extensive applications of Planet imagery to date, resulting in an open, high-resolution map of forest cover for the entire Southeastern Asia region.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3