Challenges in remote sensing based climate and crop monitoring: navigating the complexities using AI

Author:

Han Huimin,Liu Zehua,Li Jiuhao,Zeng Zhixiong

Abstract

AbstractThe fast human climate change we are witnessing in the early twenty-first century is inextricably linked to the health and function of the biosphere. Climate change is affecting ecosystems through changes in mean conditions and variability, as well as other related changes such as increased ocean acidification and atmospheric CO2 concentrations. It also interacts with other ecological stresses like as degradation, defaunation, and fragmentation.Ecology and climate monitoring are critical to understanding the complicated interactions between ecosystems and changing climate trends. This review paper dives into the issues of ecological and climate monitoring, emphasizing the complications caused by technical limits, data integration, scale differences, and the critical requirement for accurate and timely information. Understanding the ecological dynamics of these climatic impacts, identifying hotspots of susceptibility and resistance, and identifying management measures that may aid biosphere resilience to climate change are all necessary. At the same time, ecosystems can help with climate change mitigation and adaptation. The processes, possibilities, and constraints of such nature-based climate change solutions must be investigated and assessed. Addressing these issues is critical for developing successful policies and strategies for mitigating the effects of climate change and promoting sustainable ecosystem management. Human actions inscribe their stamp in the big narrative of our planet’s story, affecting the very substance of the global atmosphere. This transformation goes beyond chemistry, casting a spell on the physical characteristics that choreograph Earth’s brilliant dance. These qualities, like heavenly notes, create a song that echoes deep into the biosphere. We go on a journey via recorded tales of ecological transformation as they respond to the ever-shifting environment in this text. We peek into the rich fabric of change, drawing insight from interconnected observatories. Nonetheless, this growing symphony is set to unleash additional transformational stories - narratives of natural riches and rhythms that are both economically and environmentally essential. Understanding these stories is essential for navigating this developing epic. A roadmap for sustainable development necessitates the ability to comprehend these stories, a problem that resonates across the breadth of monitoring programs, particularly in the infancy of integrated sites.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3