Evaluation of Postharvest Senescence of Broccoli via Hyperspectral Imaging

Author:

Guo Xiaolei1,Ahlawat Yogesh K.2,Liu Tie2ORCID,Zare Alina1ORCID

Affiliation:

1. University of Florida, Department of Electrical and Computer Engineering, Gainesville, Florida, USA

2. University of Florida, Horticultural Sciences Department, Gainesville, Florida, USA

Abstract

Fresh fruit and vegetables are invaluable for human health; however, their quality often deteriorates before reaching consumers due to ongoing biochemical processes and compositional changes. We currently lack any objective indices which indicate the freshness of fruit or vegetables resulting in limited capacity to improve product quality eventually leading to food loss and waste. In this conducted study, we hypothesized that certain proteins and compounds, such as glucosinolates, could be used as one potential indicator to monitor the freshness of broccoli following harvest. To support our study, glucosinolate contents in broccoli based on HPLC measurement and transcript expression of glucosinolate biosynthetic genes in response to postharvest stresses were evaluated. We found that the glucosinolate biosynthetic pathway coincided with the progression of senescence in postharvest broccoli during storage. Additionally, we applied machine learning-based hyperspectral image (HSI) analysis, unmixing, and subpixel target detection approaches to evaluate glucosinolate level to detect postharvest senescence in broccoli. This study provides an accessible approach to precisely estimate freshness in broccoli through machine learning-based hyperspectral image analysis. Such a tool would further allow significant advancement in postharvest logistics and bolster the availability of high-quality, nutritious fresh produce.

Funder

USDA-NIFA

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3