Hyperelastic Membrane Actuators: Analysis of Toroidal and Helical Multifunctional Configurations

Author:

Perez-Guagnelli Eduardo1ORCID,Jones Joanna1,D. Damian Dana1

Affiliation:

1. Department of Automatic Control and Systems Engineering, University of Sheffield, UK

Abstract

Technologies that provide mechanical assistance are required in the medical field, such as implants that regenerate tissue through elongation and stimulation. One of the challenges is to develop actuators that combine the benefits of high axial extension at low pressures, modularity, multifunction, and load-bearing capabilities into one design while maintaining their shape and softness. Overcoming such a challenge will provide implants with enhanced capacity for mechanical assistance to induce tissue regeneration. We introduce two novel actuators (M2H) built of stacked Hyperelastic Ballooning Membrane Actuators (HBMAs) that can be realized using helical and toroidal configurations. By restraining the HBMA expansion deterministically using a semisoft exoskeleton, the actuators are endowed with axial extension and radial expansion capabilities. These actuators are thus built of modules that can be configured to different therapeutical needs and multifunctionality, to provide anatomically congruent stimulation. We present the design, fabrication, testing, and numerical and experimental validation of the M2H-HBMAs. They can axially extend up to 41 % and 32 % in their helical and toroidal configurations at input pressures as low as 26 and 24  kPa, respectively. If the axial extension module is used separately, its extension capacity reaches > 170 %. The M2H-HBMAs can perform independent and simultaneous expansion and extension motions with negligible intraluminal deformation as well as stand at least 1  kg of axial force without collapsing. The M2H-HBMAs overcome the limitations of hyperexpanding machines that show low resistance to load. We envisage M2H-HBMAs as promising tools to perform tissue regeneration procedures.

Funder

Consejo Nacional de Ciencia y Tecnología

Engineering and Physical Sciences Research Council

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3