Editing the Shape Morphing of Monocomponent Natural Polysaccharide Hydrogel Films

Author:

Hu Hao12,Huang Chao1ORCID,Galluzzi Massimiliano3ORCID,Ye Qiang2ORCID,Xiao Rui4,Yu Xuefeng3,Du Xuemin1ORCID

Affiliation:

1. Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518035, China

2. Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, China

3. Institute of Advanced Materials Science and Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518035, China

4. State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

Abstract

Shape-morphing hydrogels can be widely used to develop artificial muscles, reconfigurable biodevices, and soft robotics. However, conventional approaches for developing shape-morphing hydrogels highly rely on composite materials or complex manufacturing techniques, which limit their practical applications. Herein, we develop an unprecedented strategy to edit the shape morphing of monocomponent natural polysaccharide hydrogel films via integrating gradient cross-linking density and geometry effect. Owing to the synergistic effect, the shape morphing of chitosan (CS) hydrogel films with gradient cross-linking density can be facilely edited by changing their geometries (length-to-width ratios or thicknesses). Therefore, helix, short-side rolling, and long-side rolling can be easily customized. Furthermore, various complex artificial 3D deformations such as artificial claw, horn, and flower can also be obtained by combining various flat CS hydrogel films with different geometries into one system, which can further demonstrate various shape transformations as triggered by pH. This work offers a simple strategy to construct a monocomponent hydrogel with geometry-directing programmable deformations, which provides universal insights into the design of shape-morphing polymers and will promote their applications in biodevices and soft robotics.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3