Phase Separation Derived Anisotropic Adhesive Structural Color Hydrogel Films For Flexible Electronics

Author:

Wang Yu12,Cheng Yi1,Cai Lijun1,Chen Hanxu1,Zhao Yuanjin123ORCID

Affiliation:

1. Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China

2. Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China

3. Shenzhen Research Institute Southeast University Shenzhen 518071 China

Abstract

AbstractHydrogels hold great promise in the field of flexible electronics. Attempts in this area tend to the microstructure design of hydrogels, giving them specific adhesion and multi‐sensing functions. Here, a novel phase separation‐derived anisotropic adhesive structural color hydrogel film is presented for visually flexible electronics. The hydrogel film is generated by template replicating colloidal crystal by using phase separation emulsions of hydrophilic monomer (acrylic acid, AA), hydrophobic monomer (lauryl methacrylate, LMA), co‐monomer ([2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide (SBMA)), surfactants (hexadecyl trimethyl ammonium bromide, CTAB) and initiator (ammonium persulphate (APS)). The appearance of phase separation results in asymmetric morphologies of hydrogel film, imparting them with anisotropic adhesive performance. Attributed to the formation of inverse opal scaffold structure, the hydrogel film is featured with vivid structural color, showing superior capability in self‐reporting mechanical behavior. Additionally, benefitting from the presence of abundant ions, the hydrogel film exhibits great conductivity. Thus, the resultant hydrogel film is demonstrated with stable dual‐signal sensing properties involving color‐changing and conductivity feedback ability to respond to human activities. These features make the proposed anisotropic adhesive structural color hydrogel film highly potential in the flexible electronic field.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Basic and Applied Basic Research Foundation of Guangdong Province

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3