Multiple Fault Detection in Railway Components with Mask R-CNN Deep Neural Network

Author:

YILMAZER Merve1ORCID,KARAKÖSE Mehmet2ORCID,AYDIN İlhan2ORCID,AKIN Erhan2ORCID

Affiliation:

1. MUNZUR ÜNİVERSİTESİ

2. FIRAT ÜNİVERSİTESİ

Abstract

Demiryolu birçok yolcunun aynı anda seyahat edebilmesine olanak tanıyan aynı zamanda yük taşımacılığında da sıklıkla kullanılan bir ulaşım çeşididir. Ulaşımda kazalar ve aksamalar meydana gelmemesi için hattın periyodik olarak kontrolünün sağlanması ve hatalı bileşenlerin belirlenerek onarılması gerekmektedir. Raylı ulaşım sistemlerinin güvenliğinin sağlanması için yapılan manuel denetimlere alternatif olarak, son zamanlarda görüntü işleme algoritmaları ve derin öğrenme algoritmaları kullanılarak temassız, hızlı ve güvenilir sonuçlar veren hata tespit yöntemleri geliştirilmiştir. Bu çalışmada sağlıklı olan traversler ve travers üzerinde meydana gelen çeşitli hataların tespit edilmesine yönelik Mask R-CNN derin sinir ağı mimarisi kullanılarak yeni bir yöntem önerildi. Üç farklı hata türü ve sağlıklı travers olmak üzere toplamda dört farklı sınıf etiketi ile etiketlenen gerçek demiryolu görüntüleri kullanılarak model eğitimi ve eğitilen modelin test edilmesi sağlandı. Değerlendirme metrikleri hesaplanarak modelin başarı performansı ölçüldü. Sağlıklı ve hatalı olan traversleri belirlemede modelin doğruluğu %95 olarak belirlendi.

Publisher

Cukurova Universitesi Muhendislik-Mimarlik Fakultesi Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3