Automatic Rail Surface Defects Inspection Based on Mask R-CNN

Author:

Guo Feng1,Qian Yu1ORCID,Rizos Dimitris1ORCID,Suo Zhi2ORCID,Chen Xiaobin3

Affiliation:

1. Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC

2. Department of Civil and Environmental Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China

3. Department of Civil Engineering, Central South University, Changsha, China

Abstract

Rail surface defects have negative impacts on riding comfort and track safety, and could even lead to accidents. Based on the safety database (2020) of the Federal Railroad Administration (FRA), rail surface defects have been among the main factors causing derailments. During the past decades, there have been many efforts to detect such rail surface defects. However, the applications of earlier methods are limited by the high requirements of specialized equipment and personnel training. To date, rail surface defect inspection is still a very labor-intensive and time-consuming process, which hardly satisfies the field maintenance expectations. Therefore, a cost-effective and user-friendly automatic system that can inspect the rail surface defects with high accuracy is urgently needed. To address this issue, this study proposes a computer vision-based instance segmentation framework for rail surface defect inspection. A rail surface database including 1,040 images (260 source images and 780 augmented images) has been built. The classic instance segmentation model, Mask R-CNN, has been re-trained and fine-tuned for inspecting rail surface defects with the customized dataset. The influences of different backbones and learning rates are investigated and discussed. Experimental results indicate the ResNet101 backbone reaches better inspection capability. With a learning rate of 0.005, the re-trained Mask R-CNN model can achieve the best performance on the bounding box and mask predictions. Sixteen images are used to test the inspection performance of the fine-tuned model. The results are promising and indicate potential field applications in the future.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3