Emissivity Prediction for an IR Camera During Laser Welding of Aluminum

Author:

METALLO Antonio1

Affiliation:

1. Università degli Studi di Salerno

Abstract

Laser processing is becoming increasingly important in industrial applications. The success of the process relies on two fundamental parameters: the surface temperature of the medium and the thickness of the hardened layer. One of the most important factors during a laser process is certainly the temperature, which presents high temperature gradients. The speed at which a material undergoes a phase transition, the chemical reactions that take place during processing and the properties of the material are all dependent on temperature changes. Consequently, the measure of temperature is a demanding undertaking. This study proposes to measure temperature for the duration of laser welding with the infrared camera (IR) Optris PI. To restore the real temperature based on the brightness temperature values measured by the IR camera is needed to evaluate the emissivity to be attributed to the IR camera. For this purpose, firstly, the isotherms consistent with the melting point of aluminum (785 K) were assessed and then compared with the temperature distribution gauged in the zone of irradiation of the laser. Such data were then compared with the thickness of the melted zone. The use of the melting point isotherm allowed the calculation of the value of emissivity and the restoration of the temperature. Thermography software data acquisition wrongly presupposes the emissivity value does not change. This generates incorrect thermographic data. The surface emissivity normally hinges on temperature. Therefore, the values on which the literature relies may not work for materials of interest in the conditions of the process. This is particularly the case, where welding is carried out in keyhole mode (Tmax = Tvap). However, the physical phenomena involved, including evaporation and plasma plume formation, high spatial and temporal temperature gradients, and non-equilibrium phase transformations, influence the optical conditions of the brightness of the emission of light from the molten pool, making, De Facto, the emissivity value not constant. Thus, what we propose here is a methodological procedure that allows the measurement of the effective emissivity of the surface, at the same time taking into consideration the consequence of physical phenomena and the conditions of the surface. Two procedures (Standard and Simplified) capable of providing the correct emissivity value in relation to the working parameters have been proposed. The results showed that the procedures are correct, fast, and easy to use.

Publisher

International Centre for Applied Thermodynamics (ICAT)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IoT and Deep Learning for Smart Energy Management;Proceedings of Eighth International Congress on Information and Communication Technology;2023-09-01

2. Semi-Analytical Solution for Modelling Moving Heat Sources in a Semi-Infinite Medium with Radiative and Convective Boundary Conditions;International Journal of Thermodynamics;2023-06-01

3. Structural Dynamics of Steel Frames with the Application of Friction Isolators;New Technologies, Development and Application VI;2023

4. Internet of Things in the Construction Industry: A General Overview;New Technologies, Development and Application VI;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3