Semi-Analytical Solution for Modelling Moving Heat Sources in a Semi-Infinite Medium with Radiative and Convective Boundary Conditions

Author:

METALLO Antonio1

Affiliation:

1. Università degli Studi di Salerno

Abstract

The weld quality is highly related to the thermal history of the weld and there have been many trials to monitor the quality using an infrared (IR) sensor. To obtain the real temperature of a surface based on the brightness temperature values measured by an IR camera, the emissivity value must be derived. For an accurate assessment of the emissivity, one must be aware of the melting point isotherm. The temperature profiles only depend on three factors during laser processing, specified as constants the characteristics of the material: laser beam speed (v), laser beam diameter (d), and power (P). Predicting the width of the melted zone reached during the welding process as the parameters vary is a tool for helping a quality laser processing and for determination of true temperature in laser welding using IR camera. This study describes the semi-analytical (SA) solution of the heat conduction equation for a localized moving Gaussian heat source with constant parameters on a semi-infinite medium. The solution, simple and quick to obtain, provides information on the width of the melted zone with an average error < 5 %. The outcome is assessed numerically and contrasted with FEM solutions for a Gaussian source, the latter having undergone experimental validation. With two distinct defocus values, def0 and def-6, and by varying the speed and power settings, two separate types of experiments were run. Thus, the SA solution was obtained and compared after the FEM solution had been obtained with a good approximation (max err 4.3 %, average err 2.7 %). Only in regard to the 1AL test is an error more than 5 % detected; in the other case, the average error is 3.75 %. Two more tests at the defocus values of def-4 and def-8 were conducted to confirm the model's validity as the parameters varied. Overall, the average error between the semi-analytical and the FEM solution is 4.1%. The SA solution may be used to effectively estimate the isotherms related to the melting point of aluminum (770 K). This allows to obtain a tool which helps restoring the real temperature based on the brightness values measured by the IR camera during laser welding. At the same time, this effective tool allows to investigate the importance of different processing parameters in laser manufacturing.

Funder

University of Salerno

Publisher

International Centre for Applied Thermodynamics (ICAT)

Subject

General Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal Optimization Strategies for Li-Ion Batteries: Predictive Temperature Algorithm;Journal of Thermal Science and Engineering Applications;2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3