Capacity and Plasticity of Potassium Channels and High-Affinity Transporters in Roots of Barley and Arabidopsis

Author:

Coskun Devrim1,Britto Dev T.1,Li Mingyuan1,Oh Saehong1,Kronzucker Herbert J.1

Affiliation:

1. Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4

Abstract

Abstract The role of potassium (K+) transporters in high- and low-affinity K+ uptake was examined in roots of intact barley (Hordeum vulgare) and Arabidopsis (Arabidopsis thaliana) plants by use of 42K radiotracing, electrophysiology, pharmacology, and mutant analysis. Comparisons were made between results from barley and five genotypes of Arabidopsis, including single and double knockout mutants for the high-affinity transporter, AtHAK5, and the Shaker-type channel, AtAKT1. In Arabidopsis, steady-state K+ influx at low external K+ concentration ([K+]ext = 22.5 µm) was predominantly mediated by AtAKT1 when high-affinity transport was inhibited by ammonium, whereas in barley, by contrast, K+ channels could not operate below 100 µm. Withdrawal of ammonium resulted in an immediate and dramatic stimulation of K+ influx in barley, indicating a shift from active to passive K+ uptake at low [K+]ext and yielding fluxes as high as 36 µmol g (root fresh weight)−1 h−1 at 5 mm  [K+]ext, among the highest transporter-mediated K+ fluxes hitherto reported. This ammonium-withdrawal effect was also established in all Arabidopsis lines (the wild types, atakt1, athak5, and athak5 atakt1) at low [K+]ext, revealing the concerted involvement of several transport systems. The ammonium-withdrawal effect coincided with a suppression of K+ efflux and a significant hyperpolarization of the plasma membrane in all genotypes except athak5 atakt1, could be sustained over 24 h, and resulted in increased tissue K+ accumulation. We discuss key differences and similarities in K+ acquisition between two important model systems and reveal novel aspects of K+ transport in planta.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3