Expression of KT/KUP Genes in Arabidopsis and the Role of Root Hairs in K+ Uptake

Author:

Ahn Sung Ju1,Shin Ryoung1,Schachtman Daniel P.1

Affiliation:

1. Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132

Abstract

Abstract Potassium (K+) is the most abundant cation in plants and is required for plant growth. To ensure an adequate supply of K+, plants have multiple mechanisms for uptake and translocation. However, relatively little is known about the physiological role of proteins encoded by a family of 13 genes, named AtKT/KUP, that are involved in K+ transport and translocation. To begin to understand where and under what conditions these transporters function, we used reverse transcription-PCR to determine the spatial and temporal expression patterns of each AtKT/KUP gene across a range of organs and tested whether selected AtKT/KUP cDNAs function as K+ transporters in Escherichia coli. Many AtKT/KUPs were expressed in roots, leaves, siliques, and flowers of plants grown under K+-sufficient conditions (1.75 mm KCl) in hydroponic culture. AtHAK5 was the only gene in this family that was up-regulated upon K+ deprivation and rapidly down-regulated with resupply of K+. Ten AtKT/KUPs were expressed in root hairs, but only five were expressed in root tip cells. This suggests an important role for root hairs in K+ uptake. The growth and rubidium (Rb+) uptake of two root hair mutants, trh1-1 (tiny root hairs) and rhd6 (root hair defective), were studied to determine the contribution of root hairs to whole-plant K+ status. Whole-plant biomass decreased in the root hair mutants only when K+ concentrations were low; Rb+ (used as a tracer for K+) uptake rates were lower in the mutants at all Rb+ concentrations. Seven genes encoding AtKUP transporters were expressed in E. coli (AtKT3/KUP4, AtKT/KUP5, AtKT/KUP6, AtKT/KUP7, AtKT/KUP10, AtKT/KUP11, and AtHAK5), and their K+ transport function was demonstrated.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3