Inducible Knockdown of MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE1 Reveals Roles of Galactolipids in Organelle Differentiation in Arabidopsis Cotyledons

Author:

Fujii Sho1,Kobayashi Koichi1,Nakamura Yuki23,Wada Hajime12

Affiliation:

1. Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153–8902, Japan (S.F., K.K., H.W.);

2. PRESTO (Y.N.) and CREST (H.W.), JST, Kawaguchi, Saitama 332–0012, Japan; and

3. Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Tapei 11529, Taiwan (Y.N.)

Abstract

Abstract Monogalactosyldiacylglycerol (MGDG) is the major lipid constituent of thylakoid membranes and is essential for chloroplast biogenesis in plants. In Arabidopsis (Arabidopsis thaliana), MGDG is predominantly synthesized by inner envelope-localized MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (MGD1); its knockout causes albino seedlings. Because of the lethal phenotype of the null MGD1 mutant, functional details of MGDG synthesis at seedling development have remained elusive. In this study, we used an inducible gene-suppression system to investigate the impact of MGDG synthesis on cotyledon development. We created transgenic Arabidopsis lines that express an artificial microRNA targeting MGD1 (amiR-MGD1) under the control of a dexamethasone-inducible promoter. The induction of amiR-MGD1 resulted in up to 75% suppression of MGD1 expression, although the resulting phenotypes related to chloroplast development were diverse, even within a line. The strong MGD1 suppression by continuous dexamethasone treatment caused substantial decreases in galactolipid content in cotyledons, leading to severe defects in the formation of thylakoid membranes and impaired photosynthetic electron transport. Time-course analyses of the MGD1 suppression during seedling germination revealed that MGDG synthesis at the very early germination stage is particularly important for chloroplast biogenesis. The MGD1 suppression down-regulated genes associated with the photorespiratory pathway in peroxisomes and mitochondria as well as those responsible for photosynthesis in chloroplasts and caused high expression of genes for the glyoxylate cycle. MGD1 function may link galactolipid synthesis with the coordinated transcriptional regulation of chloroplasts and other organelles during cotyledon greening.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3