Monogalactosyldiacylglycerol Deficiency in Arabidopsis Affects Pigment Composition in the Prolamellar Body and Impairs Thylakoid Membrane Energization and Photoprotection in Leaves

Author:

Aronsson Henrik1,Schöttler Mark A.1,Kelly Amélie A.1,Sundqvist Christer1,Dörmann Peter1,Karim Sazzad1,Jarvis Paul1

Affiliation:

1. Department of Plant and Environmental Sciences, University of Gothenburg, SE–405 30 Gothenburg, Sweden (H.A., C.S., S.K.); Max-Planck-Institute of Molecular Plant Physiology, 14476 Golm, Germany (M.A.S., P.D.); Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE–106 91 Stockholm, Sweden (A.A.K.); and Department of Biology, University of

Abstract

AbstractMonogalactosyldiacylglycerol (MGDG) is the major lipid constituent of chloroplast membranes and has been proposed to act directly in several important plastidic processes, particularly during photosynthesis. In this study, the effect of MGDG deficiency, as observed in the monogalactosyldiacylglycerol synthase1-1 (mgd1-1) mutant, on chloroplast protein targeting, phototransformation of pigments, and photosynthetic light reactions was analyzed. The targeting of plastid proteins into or across the envelope, or into the thylakoid membrane, was not different from wild-type in the mgd1 mutant, suggesting that the residual amount of MGDG in mgd1 was sufficient to maintain functional targeting mechanisms. In dark-grown plants, the ratio of bound protochlorophyllide (Pchlide, F656) to free Pchlide (F631) was increased in mgd1 compared to the wild type. Increased levels of the photoconvertible pigment-protein complex (F656), which is photoprotective and suppresses photooxidative damage caused by an excess of free Pchlide, may be an adaptive response to the mgd1 mutation. Leaves of mgd1 suffered from a massively impaired capacity for thermal dissipation of excess light due to an inefficient operation of the xanthophyll cycle; the mutant contained less zeaxanthin and more violaxanthin than wild type after 60 min of high-light exposure and suffered from increased photosystem II photoinhibition. This is attributable to an increased conductivity of the thylakoid membrane at high light intensities, so that the proton motive force is reduced and the thylakoid lumen is less acidic than in wild type. Thus, the pH-dependent activation of the violaxanthin de-epoxidase and of the PsbS protein is impaired.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3