Symplastic Continuity between Companion Cells and the Translocation Stream: Long-Distance Transport Is Controlled by Retention and Retrieval Mechanisms in the Phloem

Author:

Ayre Brian G.1,Keller Felix2,Turgeon Robert1

Affiliation:

1. Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.G.A., R.T.); and

2. Institute of Plant Biology, University of Zurich, CH–8008 Zurich, Switzerland (F.K.).

Abstract

Abstract Substantial symplastic continuity appears to exist between companion cells (CCs) and sieve elements of the phloem, which suggests that small solutes within the CC are subject to indiscriminate long-distance transport via the translocation stream. To test this hypothesis, the distributions of exotic and endogenous solutes synthesized in the CCs of minor veins were studied. Octopine, a charged molecule derived from arginine and pyruvate, was efficiently transported through the phloem but was also transferred in substantial amounts to the apoplast, and presumably other non-phloem compartments. The disaccharide galactinol also accumulated in non-phloem compartments, but long-distance transport was limited. Conversely, sucrose, raffinose, and especially stachyose demonstrated reduced accumulation and efficient transport out of the leaf. We conclude that small metabolites in the cytosol of CCs do enter the translocation stream indiscriminately but are also subject to distributive forces, such as nonselective and carrier-mediated membrane transport and symplastic dispersal, that may effectively clear a compound from the phloem or retain it for long-distance transport. A model is proposed in which the transport of oligosaccharides is an adaptive strategy to improve photoassimilate retention, and consequently translocation efficiency, in the phloem.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3