Discrete and Essential Roles of the Multiple Domains of Arabidopsis FHY3 in Mediating Phytochrome A Signal Transduction

Author:

Lin Rongcheng1,Teng Yibo1,Park Hee-Jin1,Ding Lei1,Black Christopher1,Fang Ping1,Wang Haiyang1

Affiliation:

1. Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853 (R.L., Y.T., H.-J.P., L.D., C.B., H.Y.); and College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, People's Republic of China (Y.T., P.F.)

Abstract

AbstractPhytochrome A is the primary photoreceptor for mediating various far-red light-induced responses in higher plants. We recently showed that Arabidopsis (Arabidopsis thaliana) FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1), a pair of homologous proteins sharing significant sequence homology to Mutator-like transposases, act as novel transcription factors essential for activating the expression of FHY1 and FHL (for FHY1-like), whose products are required for light-induced phytochrome A nuclear accumulation and subsequent light responses. FHY3, FAR1, and Mutator-like transposases also share a similar domain structure, including an N-terminal C2H2 zinc finger domain, a central putative core transposase domain, and a C-terminal SWIM motif (named after SWI2/SNF and MuDR transposases). In this study, we performed a promoter-swapping analysis of FHY3 and FAR1. Our results suggest that the partially overlapping functions of FHY3 and FAR1 entail divergence of their promoter activities and protein subfunctionalization. To gain a better understanding of the molecular mode of FHY3 function, we performed a structure-function analysis, using site-directed mutagenesis and transgenic approaches. We show that the conserved N-terminal C2H2 zinc finger domain is essential for direct DNA binding and biological function of FHY3 in mediating light signaling, whereas the central core transposase domain and C-terminal SWIM domain are essential for the transcriptional regulatory activity of FHY3 and its homodimerization or heterodimerization with FAR1. Furthermore, the ability to form homodimers or heterodimers largely correlates with the transcriptional regulatory activity of FHY3 in plant cells. Together, our results reveal discrete roles of the multiple domains of FHY3 and provide functional support for the proposition that FHY3 and FAR1 represent transcription factors derived from a Mutator-like transposase(s).

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3