A Second Mechanism for Aluminum Resistance in Wheat Relies on the Constitutive Efflux of Citrate from Roots

Author:

Ryan Peter R.1,Raman Harsh1,Gupta Sanjay1,Horst Walter J.1,Delhaize Emmanuel1

Affiliation:

1. CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia (P.R.R., S.G., E.D.); EH Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales 2650, Australia (H.R.); and Institute for Plant Nutrition, University of Hannover, D–30419 Hannover, Germany (W.J.H.)

Abstract

Abstract The first confirmed mechanism for aluminum (Al) resistance in plants is encoded by the wheat (Triticum aestivum) gene, TaALMT1, on chromosome 4DL. TaALMT1 controls the Al-activated efflux of malate from roots, and this mechanism is widespread among Al-resistant genotypes of diverse genetic origins. This study describes a second mechanism for Al resistance in wheat that relies on citrate efflux. Citrate efflux occurred constitutively from the roots of Brazilian cultivars Carazinho, Maringa, Toropi, and Trintecinco. Examination of two populations segregating for this trait showed that citrate efflux was controlled by a single locus. Whole-genome linkage mapping using an F2 population derived from a cross between Carazinho (citrate efflux) and the cultivar EGA-Burke (no citrate efflux) identified a major locus on chromosome 4BL, Xcec, which accounts for more than 50% of the phenotypic variation in citrate efflux. Mendelizing the quantitative variation in citrate efflux into qualitative data, the Xcec locus was mapped within 6.3 cM of the microsatellite marker Xgwm495 locus. This linkage was validated in a second population of F2:3 families derived from a cross between Carazinho and the cultivar Egret (no citrate efflux). We show that expression of an expressed sequence tag, belonging to the multidrug and toxin efflux (MATE) gene family, correlates with the citrate efflux phenotype. This study provides genetic and physiological evidence that citrate efflux is a second mechanism for Al resistance in wheat.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3