The genomic inheritance of aluminum tolerance in 'Atlas 66' wheat

Author:

Berzonsky William A.

Abstract

Toxicity to aluminum (Al) limits wheat (Triticum aestivum L. em. Thell.) yields. 'Atlas 66', a soft red winter wheat classified as tolerant (root growth ≥ 0.5 cm after Al stress) to 0.44 mM Al, was hybridized with tetraploid (4x) and hexaploid (6x) 'Canthatch', a hard red spring wheat classified as sensitive (root growth < 0.5 cm after Al stress) to 0.44 mM Al. Progenies produced from these hybridizations were tested for tolerance to 0.44 mM Al in solution to ascertain the number of genes and the genomes of 'Atlas 66', which determine tolerance to aluminum. Tests of 'Atlas 66', 6x-'Canthatch', and the F1's resulting from hybridizations between the parents indicated that dominant, nuclear genes carried by 'Atlas 66' determine tolerance to 0.44 mM Al. Segregation ratios for the F2 significantly differed from ratios expected for a dominant, duplicate genetic mechanism. F1 backcross segregation ratios did not significantly differ from ratios expected for dominant, duplicate nuclear genes for tolerance to aluminum. The expression of genes for tolerance to 0.44 mM Al for 'Atlas 66' appears to be more complex than is predicted by the existence of two dominant genes. A crossing scheme, which involved hybridizing 4x-'Canthatch' with 'Atlas 66', was executed to produce 42-chromosome plants having recombinant A- and B-genome chromosomes and D-genome chromosomes derived exclusively from 'Atlas 66'. Eleven F6 and F7 lines, developed from these plants, were selfed and plants in the F6 generation were backcrossed to 'Atlas 66' and 6x-'Canthatch'. The F6 and F7 lines were subjected to 0.44 mM Al in solution as were the backcrosses. While none of the lines had more than 50% of their seedlings classified as sensitive to Al in the F6 generation, four lines exhibited such a response in the F7 generation. In general, backcrossing the F6 lines to 6x-'Canthatch' increased sensitivity to Al, while backcrossing to 'Atlas 66' increased tolerance. Results suggest that genes for tolerance to Al in 'Atlas 66' wheat are not all located on D-genome chromosomes.Key words: aluminum tolerance, genomic inheritance, Triticum.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3