Exploring the Mechanism of Physcomitrella patens Desiccation Tolerance through a Proteomic Strategy

Author:

Wang Xiao Qin1,Yang Ping Fang1,Liu Zheng1,Liu Wei Zhong1,Hu Yong1,Chen Hui1,Kuang Ting Yun1,Pei Zhen Ming1,Shen Shi Hua1,He Yi Kun1

Affiliation:

1. College of Life Sciences, Capital Normal University, Beijing 100048, China (X.Q.W., W.Z.L., Y.H., T.Y.K., Y.K.H.); Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.Q.W., H.C., T.Y.K., S.H.S.); Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824(P.F.Y.); Department of Plant Sciences, University of Cambridge, Cambridge CB

Abstract

Abstract The moss Physcomitrella patens has been shown to tolerate abiotic stresses, including salinity, cold, and desiccation. To better understand this plant's mechanism of desiccation tolerance, we have applied cellular and proteomic analyses. Gametophores were desiccated over 1 month to 10% of their original fresh weight. We report that during the course of dehydration, several related processes are set in motion: plasmolysis, chloroplast remodeling, and microtubule depolymerization. Despite the severe desiccation, the membrane system maintains integrity. Through two-dimensional gel electrophoresis and image analysis, we identified 71 proteins as desiccation responsive. Following identification and functional categorization, we found that a majority of the desiccation-responsive proteins were involved in metabolism, cytoskeleton, defense, and signaling. Degradation of cytoskeletal proteins might result in cytoskeletal disassembly and consequent changes in the cell structure. Late embryogenesis abundant proteins and reactive oxygen species-scavenging enzymes are both prominently induced, and they might help to diminish the damage brought by desiccation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3