Tissue-Specific Expression Patterns of Arabidopsis NF-Y Transcription Factors Suggest Potential for Extensive Combinatorial Complexity

Author:

Siefers Nicholas1,Dang Kristen K.1,Kumimoto Roderick W.1,Bynum William Edwards1,Tayrose Gregory1,Holt Ben F.1

Affiliation:

1. Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (N.S., K.K.D., W.E.B., G.T., B.F.H.); and Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019 (N.S., R.W.K., B.F.H.)

Abstract

AbstractAll aspects of plant and animal development are controlled by complex networks of transcription factors. Transcription factors are essential for converting signaling inputs, such as changes in daylength, into complex gene regulatory outputs. While some transcription factors control gene expression by binding to cis-regulatory elements as individual subunits, others function in a combinatorial fashion. How individual subunits of combinatorial transcription factors are spatially and temporally deployed (e.g. expression-level, posttranslational modifications and subcellular localization) has profound effects on their control of gene expression. In the model plant Arabidopsis (Arabidopsis thaliana), we have identified 36 Nuclear Factor Y (NF-Y) transcription factor subunits (10 NF-YA, 13 NF-YB, and 13 NF-YC subunits) that can theoretically combine to form 1,690 unique complexes. Individual plant subunits have functions in flowering time, embryo maturation, and meristem development, but how they combine to control these processes is unknown. To assist in the process of defining unique NF-Y complexes, we have created promoter:β-glucuronidase fusion lines for all 36 Arabidopsis genes. Here, we show NF-Y expression patterns inferred from these promoter:β-glucuronidase lines for roots, light- versus dark-grown seedlings, rosettes, and flowers. Additionally, we review the phylogenetic relationships and examine protein alignments for each NF-Y subunit family. The results are discussed with a special emphasis on potential roles for NF-Y subunits in photoperiod-controlled flowering time.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3