Direct Measurement of Aluminum Uptake and Distribution in Single Cells of Chara corallina

Author:

Taylor Gregory J.1,McDonald-Stephens Julie L.1,Hunter Douglas B.2,Bertsch Paul M.2,Elmore David3,Rengel Zdenko4,Reid Robert J.5

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 (G.J.T., J.L.M.-S.);

2. Advanced Analytical Center for Environmental Studies, Savannah River Ecology Laboratory, The University of Georgia, Aiken, South Carolina 29801 (D.B.H., P.M.B.);

3. Purdue Rare Isotope Measurement Laboratory, Purdue University, West Lafayette, Indiana 47907–1396 (D.E.);

4. Soil Science and Plant Nutrition, Faculty of Agriculture, University of Western Australia, Perth, Western Australia 6907, Australia (Z.R.); and

5. Department of Botany, University of Adelaide, Adelaide, South Australia 5005, Australia (R.J.R.)

Abstract

Abstract Quantitative information on the uptake and distribution of Al at the cellular level is required to understand mechanisms of Al toxicity, but direct measurement of uptake across the plasma membrane has remained elusive. We measured rates of Al transport across membranes in single cells of Chara corallina using the rare26Al isotope, an emerging technology (accelerator mass spectrometry), and a surgical technique for isolating subcellular compartments. Accumulation of Al in the cell wall dominated total uptake (71–318 μg m−2 min−1), although transport across the plasma membrane was detectable (71–540 ng m−2 min−1) within 30 min of exposure. Transport across the tonoplast was initially negligible, but accelerated to rates approximating uptake across the plasma membrane. The avacuolate protoplasm showed signs of saturation after 60 min, but continued movement across the plasma membrane was supported by sequestration in the vacuole. Saturation of all compartments was observed after 12 to 24 h. Accumulation of Al in the cell wall reflected variation in {Al3+} induced by changes in Al supply or complexing ligands, but was unaffected by pH. In contrast, transport across the plasma membrane peaked at pH 4.3 and increased when {Al3+} was reduced by complexing ligands. Cold temperature (4°C) reduced accumulation in the cell wall and protoplasm, whereas 2,4-dinitrophenol andm-chlorocarbonylcyanidephenyl hydrazone increased membrane transport by 12- to 13-fold. Our data suggest that the cell wall is the major site of Al accumulation. Nonetheless, membrane transport occurs within minutes of exposure and is supported by subsequent sequestration in the vacuole. The rapid delivery of Al to the protoplasm suggests that intracellular lesions may be possible.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3