Overlapping Photoprotective Function of Vitamin E and Carotenoids in Chlamydomonas

Author:

Li Zhirong1,Keasling Jay D.1,Niyogi Krishna K.1

Affiliation:

1. Howard Hughes Medical Institute and Department of Plant and Microbial Biology (Z.L., K.K.N.) and Department of Chemical and Biomolecular Engineering and Department of Bioengineering (J.D.K.), University of California, Berkeley, California 94720; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Z.L., J.D.K., K.K.N.)

Abstract

Abstract Tocopherols (vitamin E) and carotenoids are the two most abundant groups of lipid-soluble antioxidants in the chloroplast. Carotenoids are well known for their roles in protecting against photooxidative stress, whereas the photoprotective functions of tocopherols have only recently been examined experimentally. In addition, little is known about the functional overlap of carotenoids and tocopherols in vivo. To investigate this possible overlap, Chlamydomonas reinhardtii strains were engineered to overproduce tocopherols by chloroplast transformation with non-codon-optimized and codon-optimized versions of the homogentisate phytyltransferase vitamin E2 (VTE2) from Synechocystis and by nuclear transformation with VTE2 from C. reinhardtii, which resulted in 1.6-fold, 5-fold to 10-fold, and more than 10-fold increases in total tocopherol content, respectively. To test if tocopherol overproduction can compensate for carotenoid deficiency in terms of antioxidant function, the nuclear VTE2 gene from C. reinhardtii was overexpressed in the npq1 lor1 double mutant, which lacks zeaxanthin and lutein. Following transfer to high light, the npq1 lor1 strains that overaccumulated tocopherols showed increased resistance for up to 2 d and higher efficiency of photosystem II, and they were also much more resistant to other oxidative stresses. These results suggest an overlapping functions of tocopherols and carotenoids in protection against photooxidative stress.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3