Affiliation:
1. Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120–749, Korea (S.K.C., M.Y.R., D.H.S., W.T.K.); ReSEAT Program, Korea Institute of Science and Technology Information, Seoul 130–741, Korea (B.G.K.)
Abstract
AbstractThe ubiquitin (Ub)-26S proteasome pathway is implicated in various cellular processes in higher plants. AtAIRP1, a C3H2C3-type RING (for Really Interesting New Gene) E3 Ub ligase, is a positive regulator in the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)-dependent drought response. Here, the AtAIRP2 (for Arabidopsis ABA-insensitive RING protein 2) gene was identified and characterized. AtAIRP2 encodes a cytosolic C3HC4-type RING E3 Ub ligase whose expression was markedly induced by ABA and dehydration stress. Thus, AtAIRP2 belongs to a different RING subclass than AtAIRP1 with a limited sequence identity. AtAIRP2-overexpressing transgenic (35S:AtAIRP2-sGFP) and atairp2 loss-of-function mutant plants exhibited hypersensitive and hyposensitive phenotypes, respectively, to ABA in terms of seed germination, root growth, and stomatal movement. 35S:AtAIRP2-sGFP plants were highly tolerant to severe drought stress, and atairp2 alleles were more susceptible to water stress than were wild-type plants. Higher levels of drought-induced hydrogen peroxide production were detected in 35S:AtAIRP2-sGFP as compared with atairp2 plants. ABA-inducible drought-related genes were up-regulated in 35S:AtAIRP2-sGFP and down-regulated in atairp2 progeny. The positive effects of AtAIRP2 on ABA-induced stress genes were dependent on SNF1-related protein kinases, key components of the ABA signaling pathway. Therefore, AtAIRP2 is involved in positive regulation of ABA-dependent drought stress responses. To address the functional relationship between AtAIRP1 and AtAIRP2, FLAG-AtAIRP1 and AtAIRP2-sGFP genes were ectopically expressed in atairp2-2 and atairp1 plants, respectively. Constitutive expression of FLAG-AtAIRP1 and AtAIRP2-sGFP in atairp2-2 and atairp1 plants, respectively, reciprocally rescued the loss-of-function ABA-insensitive phenotypes during germination. Additionally, atairp1/35S:AtAIRP2-sGFP and atairp2-2/35S:FLAG-AtAIRP1 complementation lines were more tolerant to dehydration stress relative to atairp1 and atairp2-2 single knockout plants. Overall, these results suggest that AtAIRP2 plays combinatory roles with AtAIRP1 in Arabidopsis ABA-mediated drought stress responses.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献