The Arabidopsis RING Finger E3 Ligase RHA2a Is a Novel Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development

Author:

Bu Qingyun1,Li Hongmei1,Zhao Qingzhen1,Jiang Hongling1,Zhai Qingzhe1,Zhang Jie1,Wu Xiaoyan1,Sun Jiaqiang1,Xie Qi1,Wang Daowen1,Li Chuanyou1

Affiliation:

1. State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Q.B., H.L., Q.Z., H.J., Q.Z., J.Z., X.W., J.S., Q.X., C.L.); Graduate School of Chinese Academy of Sciences, Beijing 100039, China (H.L., Q.Z., Q.Z., J.Z.); and State Key Laboratory of Plant Cell and Chromosome Engine

Abstract

AbstractThe phytohormone abscisic acid (ABA) is well known for its regulatory roles in integrating environmental constraints with the developmental programs of plants. Here, we characterize the biological function of the Arabidopsis (Arabidopsis thaliana) RING-H2 protein RHA2a in ABA signaling. The rha2a mutant is less sensitive to ABA than the wild type during seed germination and early seedling development, whereas transgenic plants overexpressing RHA2a are hypersensitive, indicating that RHA2a positively regulates ABA-mediated control of seed germination and early seedling development. Double mutant analyses of rha2a with several known ABA-insensitive mutants suggest that the action of RHA2a in ABA signaling is independent of that of the transcription factors ABI3, ABI4, and ABI5. We provide evidence showing that RHA2a also positively regulates plant responses to salt and osmotic stresses during seed germination and early seedling development. RHA2a is a functional E3 ubiquitin ligase, and its conserved RING domain is likely important for the biological function of RHA2a in ABA signaling. Together, these results suggest that the E3 ligase RHA2a is an important regulator of ABA signaling during seed germination and early seedling development.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3