Interallelic Complementation at the Ubiquitous Urease Coding Locus of Soybean

Author:

Goldraij Ariel1,Beamer Lesa J.1,Polacco Joe C.1

Affiliation:

1. Department of Biochemistry (A.G., L.J.B., J.C.P.) and Interdisciplinary Plant Group (A.G., J.C.P.), University of Missouri, Columbia, Missouri 65211

Abstract

Abstract Soybean (Glycine max [L.] Merrill) mutant aj6 carries a single recessive lesion, aj6, that eliminates ubiquitous urease activity in leaves and callus while retaining normal embryo-specific urease activity. Consistently, aj6/aj6 plants accumulated urea in leaves. In crosses of aj6/aj6 by urease mutants at the Eu1, Eu2, and Eu3 loci, F1 individuals exhibited wild-type leaf urease activity, and the F2 segregated urease-negative individuals, demonstrating that aj6 is not an allele at these loci. F2 of aj6/aj6 crossed with a null mutant lacking the Eu1-encoded embryo-specific urease showed that ubiquitous urease was also inactive in seeds of aj6/aj6. The cross of aj6/aj6 to eu4/eu4, a mutant previously assigned to the ubiquitous urease structural gene (R.S. Torisky, J.D. Griffin, R.L. Yenofsky, J.C. Polacco [1994] Mol Gen Genet 242: 404–414), yielded an F1 having 22% ± 11% of wild-type leaf urease activity. Coding sequences for ubiquitous urease were cloned by reverse transcriptase-polymerase chain reaction from wild-type, aj6/aj6, and eu4/eu4 leaf RNA. The ubiquitous urease had an 837-amino acid open reading frame (ORF), 87% identical to the embryo-specific urease. The aj6/aj6 ORF showed an R201C change that cosegregated with the lack of leaf urease activity in a cross against a urease-positive line, whereas the eu4/eu4 ORF showed a G468E change. Heteroallelic interaction in F2 progeny of aj6/aj6 × eu4/eu4 resulted in partially restored leaf urease activity. These results confirm that aj6/aj6 and eu4/eu4 are mutants affected in the ubiquitous urease structural gene. They also indicate that radical amino acid changes in distinct domains can be partially compensated in the urease heterotrimer.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3