Affiliation:
1. United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California 94710 (Y.Q.G., D.C.-D., O.D.A.); and Institute of Crop Germplasm Resources, Chinese Academy of Agricultural Sciences, Beijing 100081 China (X.K.)
Abstract
Abstract
Bread wheat (Triticum aestivum) is an allohexaploid species, consisting of three subgenomes (A, B, and D). To study the molecular evolution of these closely related genomes, we compared the sequence of a 307-kb physical contig covering the high molecular weight (HMW)-glutenin locus from the A genome of durum wheat (Triticum turgidum, AABB) with the orthologous regions from the B genome of the same wheat and the D genome of the diploid wheat Aegilops tauschii (Anderson et al., 2003; Kong et al., 2004). Although gene colinearity appears to be retained, four out of six genes including the two paralogous HMW-glutenin genes are disrupted in the orthologous region of the A genome. Mechanisms involved in gene disruption in the A genome include retroelement insertions, sequence deletions, and mutations causing in-frame stop codons in the coding sequences. Comparative sequence analysis also revealed that sequences in the colinear intergenic regions of these different genomes were generally not conserved. The rapid genome evolution in these regions is attributable mainly to the large number of retrotransposon insertions that occurred after the divergence of the three wheat genomes. Our comparative studies indicate that the B genome diverged prior to the separation of the A and D genomes. Furthermore, sequence comparison of two distinct types of allelic variations at the HMW-glutenin loci in the A genomes of different hexaploid wheat cultivars with the A genome locus of durum wheat indicates that hexaploid wheat may have more than one tetraploid ancestor.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献