Affiliation:
1. Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801–4730 (S.L.N., S.P.M., S.P.L.); and Department of Biological Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom (A.K.A.-S., C.A.R.)
Abstract
Abstract
Field-grown Miscanthus × giganteus maintains high photosynthetic quantum yields and biomass productivity in cool temperate climates. It is related to maize (Zea mays) and uses the same NADP-malic enzyme C4 pathway. This study tests the hypothesis that M. × giganteus, in contrast to maize, forms photosynthetically competent leaves at low temperatures with altered amounts of pyruvate orthophosphate dikinase (PPDK) and Rubisco or altered properties of PPDK. Both species were grown at 25°C/20°C or 14°C/11°C (day/night), and leaf photosynthesis was measured from 5°C to 38°C. Protein and steady-state transcript levels for Rubisco, PPDK, and phosphoenolpyruvate carboxylase were assessed and the sequence of C4-PPDK from M. × giganteus was compared with other C4 species. Low temperature growth had no effect on photosynthesis in M. × giganteus, but decreased rates by 80% at all measurement temperatures in maize. Amounts and expression of phosphoenolpyruvate carboxylase were affected little by growth temperature in either species. However, PPDK and Rubisco large subunit decreased >50% and >30%, respectively, in cold-grown maize, whereas these levels remained unaffected by temperature in M. × giganteus. Differences in protein content in maize were not explained by differences in steady-state transcript levels. Several different M. × giganteus C4-PPDK cDNA sequences were found, but putative translated protein sequences did not show conservation of amino acids contributing to cold stability in Flaveria brownii C4-PPDK. The maintenance of PPDK and Rubisco large subunit amounts in M. × giganteus is consistent with the hypothesis that these proteins are critical to maintaining high rates of C4 photosynthesis at low temperature.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
186 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献