Decadal change in soil carbon and nitrogen with a Miscanthus × giganteus crop on abandoned agricultural land in southeast Ohio

Author:

Adu Fosu Samuel1,Davis Sarah C.1ORCID

Affiliation:

1. Environmental Studies, Voinovich School of Leadership and Public Service Ohio University Athens Ohio USA

Abstract

AbstractMiscanthus × giganteus (miscanthus) is considered a beneficial biomass energy crop because of its carbon (C) sequestration potential and low fertilizer requirements, but few studies in the United States have measured long‐term C sequestration of miscanthus on suboptimal agricultural lands over a decadal scale, and none have been conducted in southeast Ohio. The objective of this study was to measure the soil C sequestration on abandoned agricultural land with a miscanthus crop that is harvested annually, the long‐term changes in plant and soil nitrogen (N), and the photosynthetic capacity in the tenth year of growth. This study was conducted over a 10‐year period from 2013 through 2023. A significant amount of C was accumulated in the soil (p < 0.05) and the mean C sequestration rates were 0.83 and 1.37 Mg C ha−1 year−1 at two different sites. The amount of C accumulated in the miscanthus plots by the tenth year was also greater than soil C in unmanaged grassland soils, but the difference was not statistically significant (p > 0.05). There was no statistically significant change in the amount of N found in soil and plants over 10 years (p > 0.05), but the variability in plant N was greater in some years relative to others. Even though miscanthus was grown without N fertilizers in this study, soil N at 0–30 cm depth was not depleted over 10 years of crop management. The photosynthetic capacity of miscanthus measured in this study indicated that the plants were thriving after 10 years, and C assimilation for growth was consistent with the findings of prior work that evaluated the maximum photosynthetic rates of this species. The combination of significant soil C sequestration, sustained soil N, and high photosynthetic rates has important implications for the sustainability of miscanthus as a biomass crop.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3