Arabidopsis to Rice. Applying Knowledge from a Weed to Enhance Our Understanding of a Crop Species

Author:

Rensink W.A.1,Buell C. Robin1

Affiliation:

1. The Institute for Genomic Research, Rockville, Maryland 20850

Abstract

Abstract Although Arabidopsis is well established as the premiere model species in plant biology, rice (Oryza sativa) is moving up fast as the second-best model organism. In addition to the availability of large sets of genetic, molecular, and genomic resources, two features make rice attractive as a model species: it represents the taxonomically distinct monocots and is a crop species. Plant structural genomics was pioneered on a genome-scale in Arabidopsis and the lessons learned from these efforts were not lost on rice. Indeed, the sequence and annotation of the rice genome has been greatly accelerated by method improvements made in Arabidopsis. For example, the value of full-length cDNA clones and deep expressed sequence tag resources, obtained in Arabidopsis primarily after release of the complete genome, has been recognized by the rice genomics community. For rice >250,000 expressed sequence tags and 28,000 full-length cDNA sequences are available prior to the completion of the genome sequence. With respect to tools for Arabidopsis functional genomics, deep sequence-tagged lines, inexpensive spotted oligonucleotide arrays, and a near-complete whole genome Affymetrix array are publicly available. The development of similar functional genomics resources for rice is in progress that for the most part has been more streamlined based on lessons learned from Arabidopsis. Genomic resource development has been essential to set the stage for hypothesis-driven research, and Arabidopsis continues to provide paradigms for testing in rice to assess function across taxonomic divisions and in a crop species.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3