Virus Induction of Heat Shock Protein 70 Reflects a General Response to Protein Accumulation in the Plant Cytosol

Author:

Aparicio Frederic1,Thomas Carole L.1,Lederer Carsten1,Niu Yan1,Wang Daowen1,Maule Andrew J.1

Affiliation:

1. John Innes Centre, Norwich NR4 7UH, United Kingdom (F.A., C.L.T., C.L., A.J.M.); and Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.N., D.W.)

Abstract

Abstract Different cytoplasmically replicating RNA viruses were shown to induce a specific subset of heat-inducible heat shock protein 70 (HSP70) genes in Arabidopsis (Arabidopsis thaliana). To identify the inducing principle, a promoter∷reporter system was developed for the facile analysis of differentially responding Arabidopsis HSP70 genes, by infiltration into Nicotiana benthamiana leaves. Through transient expression of individual viral cistrons or through deletion analysis of a viral replicon, we were unable to identify a unique inducer of HSP70. However, there was a positive correlation between the translatability of the test construct and the differential induction of HSP70. Since these data implied a lack of specificity in the induction process, we also expressed a random series of cytosolically targeted Arabidopsis genes and showed that these also differentially induced HSP70. Through a comparison of different promoter∷reporter constructs and through measurements of the steady-state levels of the individual proteins, it appeared that the HSP70 response reflected the ability of the cytosol to sense individual properties of particular proteins when expressed at high levels. This phenomenon is reminiscent of the unfolded protein response observed when the induced accumulation of proteins in the endoplasmic reticulum also induces a specific suite of chaperones.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3