Comprehensive Genomic Analysis and Expression Profile of Hsp70 Gene Family Related to Abiotic and Biotic Stress in Cucumber

Author:

Zhou Zixian12,Xiao Lingdi1,Zhao Jindong1,Hu Zhaoyang1,Zhou Yuelong1ORCID,Liu Shiqiang1ORCID,Wu Hao23,Zhou Yong14ORCID

Affiliation:

1. College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China

2. Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, China

3. School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China

4. Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China

Abstract

Heat shock protein 70 (Hsp70) is a class of HSPs involved in plant growth and development, stress response and regulation. The Hsp70 proteins exist widely in the plant world, but the detail information about Hsp70s is still unclear in cucumber. Based on the available cucumber genome, a total of 12 Hsp70 genes (CsHsp70-1 to CsHsp70-12) were identified in this study, and they were distributed among five out of seven chromosomes. The CsHsp70s were divided into four groups based on a phylogenetic analysis by using protein sequences from cucumber and other plants, and their conserved motifs were relatively conserved. Gene duplication analysis showed that segmental duplication is the main driving force of expansion in cucumber CsHsp70 genes. Promoter analysis of CsHsp70 genes showed that they contained many cis-acting elements involved in hormone and stress responses. Expression analysis by RNA-seq and qRT-PCR indicated that the expression of most CsHsp70 genes was associated with multiple biotic and abiotic stresses in cucumber. This study introduces the characteristics of cucumber CsHsp70 genes and the regulation of their expression levels in various abiotic and biotic stresses, which provided a basis for functional exploration and utilization of CsHsp70 genes in the future.

Funder

Open Fund of the Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region

Key Projects of Shaoguan University

Science and Technology Planning Project of Shaoguan

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3