Multiple Protein Regions Contribute to Differential Activities of YABBY Proteins inReproductive Development

Author:

Meister Robert J.1,Oldenhof Harriette1,Bowman John L.1,Gasser Charles S.1

Affiliation:

1. Section of Molecular and Cellular Biology (R.J.M., C.S.G.) and Section of Plant Biology (H.O., J.L.B.), University of California, Davis, California 95616

Abstract

Abstract Members of the YABBY family of putative transcription factors participate in abaxial-adaxial identity determination in lateral organs in Arabidopsis (Arabidopsis thaliana). Two YABBY genes specifically expressed in reproductive structures, CRABS CLAW (CRC) and INNER NO OUTER (INO), have additional activities, with CRC promoting nectary development and carpel fusion, and INO responding to spatial regulation by SUPERMAN during ovule development. All YABBY coding regions, except YABBY5, were able to restore outer integument growth in ino-1 mutants when expressed from the INO promoter (PRO  INO). However, INO was the only YABBY family member that responded correctly to SUPERMAN to maintain the wild-type gynoapical-gynobasal asymmetry of the outer integument. By contrast, INO, FILAMENTOUS FLOWER, and YABBY3 failed to complement crc-1 when expressed from PRO  CRC. Roles of individual regions of CRC and INO in these effects were assessed using chimeric proteins with PRO  INO and PRO  CRC and the relatively constitutive cauliflower mosaic virus PRO35S. Regions of CRC were found to contribute additively to CRC-specific functions in nectary and carpel formation, with a nearly direct relationship between the amount of CRC included and the degree of complementation of crc-1. When combined with INO sequences, the central and carboxyl-terminal regions of CRC were individually sufficient to overcome inhibitory effects of SUPERMAN within the outer integument. Reproductive phenotypes resulting from constitutive expression were dependent on the nature of the central region with some contributions from the amino terminus. Thus, the YABBY family members have both unique and common functional capacities, and residues involved in differential activities are distributed throughout the protein sequences.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3