The Arabidopsis INNER NO OUTER (INO) gene acts exclusively and quantitatively in regulation of ovule outer integument development

Author:

Skinner Debra J.ORCID,Dang TrangORCID,Gasser Charles S.ORCID

Abstract

ABSTRACTThe INNER NO OUTER (INO) gene is essential for formation of the outer integument of ovules in Arabidopsis thaliana. Initially described lesions in INO were missense mutations resulting in aberrant mRNA splicing. To determine the null mutant phenotype we used CRISPR to induce frame-shift mutations and found, in confirmation of results on another recently identified frame-shift mutation (Vijayan et al., 2021), that such mutants have a phenotype identical to the most severe splicing mutant (ino-1), with effects specific to outer integument development. We show that the altered protein of an ino mRNA splicing mutant with a less severe phenotype (ino-4) does not have INO activity, and the mutant is partial because it produces a small amount of correctly spliced INO mRNA. Screening for suppressors of ino-4 in a fast-neutron mutagenized population identified a genetic duplication of the ino-4 gene leading to an increase in the amount of this mRNA. The increased expression led to a decrease in the severity of the mutant effects, indicating that the amount of INO activity quantitatively regulates outer integument growth. The results further confirm that the role of INO in Arabidopsis development is specific to the outer integument of ovules where it quantitatively affects the growth of this structure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3