Floral Meristem Identity Genes Are Expressed during Tendril Development in Grapevine

Author:

Calonje Myriam1,Cubas Pilar1,Martínez-Zapater José M.1,Carmona María José1

Affiliation:

1. Departamento de Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain (M.C., M.J.C.); Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain (P.C., J.M.M.-Z.); and Departament

Abstract

Abstract To study the early steps of flower initiation and development in grapevine (Vitis vinifera), we have isolated two MADS-box genes, VFUL-L and VAP1, the putative FUL-like and AP1 grapevine orthologs, and analyzed their expression patterns during vegetative and reproductive development. Both genes are expressed in lateral meristems that, in grapevine, can give rise to either inflorescences or tendrils. They are also coexpressed in inflorescence and flower meristems. During flower development, VFUL-L transcripts are restricted to the central part of young flower meristems and, later, to the prospective carpel-forming region, which is consistent with a role of this gene in floral transition and carpel and fruit development. Expression pattern of VAP1 suggests that it may play a role in flowering transition and flower development. However, its lack of expression in sepal primordia, does not support its role as an A-function gene in grapevine. Neither VFUL-L nor VAP1 expression was detected in vegetative organs such as leaves or roots. In contrast, they are expressed throughout tendril development. Transcription of both genes in tendrils of very young plants that have not undergone flowering transition indicates that this expression is independent of the flowering process. These unique expression patterns of genes typically involved in reproductive development have implications on our understanding of flower induction and initiation in grapevine, on the origin of grapevine tendrils and on the functional roles of AP1-and FUL-like genes in plant development. These results also provide molecular support to the hypothesis that Vitis tendrils are modified reproductive organs adapted to climb.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3