LEAFY expression and flower initiation in Arabidopsis

Author:

Blazquez M.A.1,Soowal L.N.1,Lee I.1,Weigel D.1

Affiliation:

1. Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

Abstract

During the initial vegetative phase, the Arabidopsis shoot meristem produces leaves with associated lateral shoots at its flanks, while the later reproductive phase is characterized by the formation of flowers. The LEAFY gene is an important element of the transition from the vegetative to the reproductive phase, as LEAFY is both necessary and sufficient for the initiation of individual flowers. We have analyzed in detail the expression of LEAFY during the plant life cycle, and found that LEAFY is extensively expressed during the vegetative phase. In long days, Arabidopsis plants flower soon after germination, and this is paralleled by rapid upregulation of LEAFY. In short days, Arabidopsis plants flower several weeks later than in long days, but LEAFY expression increases gradually before flowering commences. Application of the plant hormone gibberellin, which hastens flowering in short days, enhances the gradual change in LEAFY expression observed in short days. Changes in LEAFY expression before the transition to flowering suggest that the time point of this transition is at least partly controlled by the levels of LEAFY activity that are prevalent at a given time of the life cycle. This assumption is borne out by the finding that increasing the copy number of endogenous LEAFY reduces the number of leaves produced before the first flower is formed. Thus, LEAFY combines properties of flowering-time and flower-meristem-identity genes, indicating that LEAFY is a direct link between the global process of floral induction and the regional events associated with the initiation of individual flowers.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference44 articles.

1. terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana.;Alvarez;Plant J,1992

2. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants.;Bechtold;C. R. Acad. Sci,1993

3. Control of inflorescence architecture in Antirrhinum.;Bradley;Nature,1996

4. Pathways for inflorescence and floral induction in Antirrhinum.;Bradley;Development,1996

5. Inflorescence commitment and architecture in Arabidopsis.;Bradley;Science,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3