Analysis of a Sugar Response Mutant of Arabidopsis Identified a Novel B3 Domain Protein That Functions as an Active Transcriptional Repressor

Author:

Tsukagoshi Hironaka1,Saijo Takanori1,Shibata Daisuke1,Morikami Atsushi1,Nakamura Kenzo1

Affiliation:

1. Laboratory of Biochemistry, Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya 464–8601, Japan (H.T., T.S., K.N.); Kazusa DNA Research Institute, Kisarazu, Chiba 292–0818, Japan (D.S.); and College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487–8501, Japan (A.M.)

Abstract

Abstract A recessive mutation hsi2 of Arabidopsis (Arabidopsis thaliana) expressing luciferase (LUC) under control of a short promoter derived from a sweet potato (Ipomoea batatas) sporamin gene (Spomin∷LUC) caused enhanced LUC expression under both low- and high-sugar conditions, which was not due to increased level of abscisic acid. The hsi2 mutant contained a nonsense mutation in a gene encoding a protein with B3 DNA-binding domain. HSI2 and two other Arabidopsis proteins appear to constitute a novel subfamily of B3 domain proteins distinct from ABI3, FUS3, and LEC2, which are transcription activators involved in seed development. The C-terminal part of HSI2 subfamily proteins contained a sequence similar to the ERF-associated amphiphilic repression (EAR) motif. Deletion of the C-terminal portion of HSI2 lost in the hsi2 mutant caused reduced nuclear targeting of HSI2. Null allele of HSI2 showed even higher Spomin∷LUC expression than the hsi2 mutant, whereas overexpression of HSI2 reduced the LUC expression. Transient coexpression of 35S∷HSI2 with Spomin∷LUC in protoplasts repressed the expression of LUC activity, and deletion or mutation of the EAR motif significantly reduced the repression activity of HSI2. These results indicate that HSI2 and related proteins are B3 domain-EAR motif active transcription repressors.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference47 articles.

1. Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev14:2085–2096

2. Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B (1992) A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol Biochem30:123–128

3. Baier M, Hemmann G, Holman R, Corke F, Card R, Smith C, Rook F, Bevan MW (2004) Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. Plant Physiol134:1–11

4. Baumlein H, Misera S, Luerßen H, Kolle K, Horstmann C, Wobus U, Muller AJ (1994) The FUS3 gene of Arabidopsis thaliana is a regulator of gene expression during late embryogenesis. Plant J6:379–387

5. Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol82:259–266

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3