Author:
Park Young-Soo,Cho Hye Jeong,Kim Seungill
Abstract
Abstract
Background
The B3 gene family, one of the largest plant-specific transcription factors, plays important roles in plant growth, seed development, and hormones. However, the B3 gene family, especially the REM subfamily, has not been systematically and functionally studied.
Results
In this study, we performed genome-wide re-annotation of B3 genes in five Solanaceae plants, Arabidopsis thaliana, and Oryza sativa, and finally predicted 1,039 B3 genes, including 231 (22.2%) newly annotated genes. We found a striking abundance of REM genes in pepper species (Capsicum annuum, Capsicum baccatum, and Capsicum chinense). Comparative motif analysis revealed that REM and other subfamilies (ABI3/VP1, ARF, RAV, and HSI) consist of different amino acids. We verified that the large number of REM genes in pepper were included in the specific subgroup (G8) through the phylogenetic analysis. Chromosome location and evolutionary analyses suggested that the G8 subgroup genes evolved mainly via a pepper-specific recent tandem duplication on chromosomes 1 and 3 after speciation between pepper and other Solanaceae. RNA-seq analyses suggested the potential functions of REM genes under salt, heat, cold, and mannitol stress conditions in pepper (C. annuum).
Conclusions
Our study provides evolutionary and functional insights into the REM gene family in pepper.
Funder
National Research Foundation of Korea
Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
Publisher
Springer Science and Business Media LLC
Reference72 articles.
1. Swaminathan K, Peterson K, Jack T. The plant B3 superfamily. Trends Plant Sci. 2008;13(12):647–55.
2. McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell. 1991;66(5):895–905.
3. Suzuki M, Kao CY, McCarty DR. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell. 1997;9(5):799–807.
4. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. 1997;9(11):1963–71.
5. Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 1999;27(2):470–8.