Identification of the Arabidopsis Palmitoyl-Monogalactosyldiacylglycerol Δ7-Desaturase Gene FAD5, and Effects of Plastidial Retargeting of Arabidopsis Desaturases on the fad5 Mutant Phenotype

Author:

Heilmann Ingo1,Mekhedov Sergei1,King Barbara1,Browse John1,Shanklin John1

Affiliation:

1. Department of Biology, Brookhaven National Laboratory, Upton, New York 11973 (I.H., J.S.); Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (S.M.); and Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (B.K., J.B.)

Abstract

Abstract Hexadeca 7,10,13-trienoic acid (16:3Δ7,10,13) is one of the most abundant fatty acids in Arabidopsis (Arabidopsis thaliana) and a functional component of thylakoid membranes, where it is found as an sn-2 ester of monogalactosyldiacylglycerol. The Arabidopsis fad5 mutant lacks activity of the plastidial palmitoyl-monogalactosyldiacylglycerol Δ7-desaturase FAD5, and is characterized biochemically by the absence of 16:3Δ7,10,13 and physiologically by reduced chlorophyll content and a reduced recovery rate after photoinhibition. While the fad5 mutation has been mapped, the FAD5 gene was not unambiguously identified, and a formal functional characterization by complementation of fad5 mutant phenotypes has not been reported. Two candidate genes (At3g15850 and At3g15870) predicted to encode plastid-targeted desaturases at the fad5 chromosomal locus were cloned from fad5 plants and sequenced. A nonsense mutation changing codon TGG (Trp-98) into TGA (stop) was identified in At3g15850 (ADS3), whereas the fad5 At3g15870 allele was identical to wild type (after correction of a sequencing error in the published wild-type genomic At3g15870 sequence). Expression of a genomic clone or cDNA for wild-type At3g15850 conferred on fad5 plants the ability to synthesize 16:3Δ7,10,13 and restored leaf chlorophyll content. Arabidopsis carrying a T-DNA insertion in At3g15870 had wild-type levels of both 16:3Δ7,10,13 and chlorophyll. Together, these data formally prove that At3g15850 is FAD5. Interestingly, the fad5 phenotype was partially complemented when extraplastidial Δ9-desaturases of the Arabidopsis desaturase (ADS) family were expressed as fusions with a plastidial transit peptide. Tight correlation between leaf 16:3Δ7,10,13 levels and chlorophyll content suggests a role for plastidial fatty acid desaturases in thylakoid formation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3