Affiliation:
1. Department of Botany, North Carolina State University, Raleigh, North Carolina 27695 (J.W.G., F.Z., H.W.B., R.S.B.)
Abstract
Abstract
The maize (Zea mays L.) floury-2 (fl2) mutation is associated with a general decrease in storage protein synthesis, altered protein body morphology, and the synthesis of a novel 24-kD α--zein storage protein. Unlike storage proteins in normal kernels and the majority of storage proteins in fl2 kernels, the 24-kD α--zein contains a signal peptide that would normally be removed during protein synthesis and processing. The expected processing site of this α--zein reveals a putative mutation alaine->valine (Ala->Val) that is not found at other junctions between signal sequences and mature proteins. To investigate the impact of such a mutation on signal peptide cleavage, we have assayed the 24-kD fl2 α--zein in a co-translational processing system in vitro. Translation of RNA from fl2 kernels or synthetic RNA encoding the fl2 α--zein in the presence of microsomes yielded a 24-kD polypeptide. A normal signal peptide sequence, generated by site-directed mutagenesis, restored the capacity of the RNA to direct synthesis of a properly processed protein in a cell-free system. Both the fl2 α--zein and the fl2 α--zein (Val->Ala) were translocated into the lumen of the endoplasmic reticulum. The processed fl2 α--zein (Val->Ala) was localized in the soluble portion of the microsomes, whereas the fl2 α--zein co-fractionated with the microsomal membranes. By remaining anchored to protein body membranes during endosperm maturation, the fl2 zein may thus constrain storage protein packing and perturb protein body morphology.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献