Characterization and Functional Expression of a Ubiquitously Expressed Tomato Pectin Methylesterase

Author:

Gaffe J.1,Tiznado M. E.1,Handa A. K.1

Affiliation:

1. Department of Horticulture, Purdue University, 1165 Horticulture Building, West Lafayette, Indiana 47907–1165

Abstract

Abstract Pectin methylesterase (PME),a ubiquitous enzyme in plants, de-esterifies the methoxylated pectin in the plant cell wall. We have characterized a PME gene (designated as pmeu1) from tomato (Lycopersicon esculentum) with an expression that is higher in younger root, leaf, and fruit tissues than in older tissues. Hypocotyls and epicotyls show higher accumulation of pmeu1 transcripts compared with cotyledons. pmeu1 represents a single-copy gene in the tomato genome. Comparison of the deduced amino acid sequence of pmeu1 with other PME homologs showed that the N-terminal halves are highly variable, and the C-terminal halves are relatively conserved in plant PMEs. Constitutive expression of a fruit-specific PME antisense gene does not affect the level of pmeu1 transcripts in vegetative tissues but does lower the level of PMEU1 mRNA in developing tomato fruits. These results suggest that there exists developmentally regulated silencing of pmeu1 by a heterologous PME antisense gene. Expression of pmeu1 in tobacco (Nicotiana tabacum) under the control of the cauliflower mosaic virus 35S promoter caused up to a 4-fold increase in PME specific activity that was correlated with the accumulation of PMEU1 mRNA. In vitro transcription-translation analyses show that pmeu1 encodes a 64-kD polypeptide, whereas transgenic tobacco plants expressing pmeu1 accumulate a new 37-kD polypeptide, suggesting extensive posttranslational processing of PMEU1. These results are the first evidence, to our knowledge, of the functional characterization of a PME gene and the extensive modification of the encoded polypeptide.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3