Affiliation:
1. Department of Horticulture, Purdue University, 1165 Horticulture Building, West Lafayette, Indiana 47907–1165
Abstract
Abstract
Pectin methylesterase (PME),a ubiquitous enzyme in plants, de-esterifies the methoxylated pectin in the plant cell wall. We have characterized a PME gene (designated as pmeu1) from tomato (Lycopersicon esculentum) with an expression that is higher in younger root, leaf, and fruit tissues than in older tissues. Hypocotyls and epicotyls show higher accumulation of pmeu1 transcripts compared with cotyledons. pmeu1 represents a single-copy gene in the tomato genome. Comparison of the deduced amino acid sequence of pmeu1 with other PME homologs showed that the N-terminal halves are highly variable, and the C-terminal halves are relatively conserved in plant PMEs. Constitutive expression of a fruit-specific PME antisense gene does not affect the level of pmeu1 transcripts in vegetative tissues but does lower the level of PMEU1 mRNA in developing tomato fruits. These results suggest that there exists developmentally regulated silencing of pmeu1 by a heterologous PME antisense gene. Expression of pmeu1 in tobacco (Nicotiana tabacum) under the control of the cauliflower mosaic virus 35S promoter caused up to a 4-fold increase in PME specific activity that was correlated with the accumulation of PMEU1 mRNA. In vitro transcription-translation analyses show that pmeu1 encodes a 64-kD polypeptide, whereas transgenic tobacco plants expressing pmeu1 accumulate a new 37-kD polypeptide, suggesting extensive posttranslational processing of PMEU1. These results are the first evidence, to our knowledge, of the functional characterization of a PME gene and the extensive modification of the encoded polypeptide.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献