yucca6, a Dominant Mutation in Arabidopsis, Affects Auxin Accumulation and Auxin-Related Phenotypes

Author:

Kim Jeong Im1,Sharkhuu Altanbadralt1,Jin Jing Bo1,Li Pinghua1,Jeong Jae Cheol1,Baek Dongwon1,Lee Sang Yeol1,Blakeslee Joshua J.1,Murphy Angus S.1,Bohnert Hans J.1,Hasegawa Paul M.1,Yun Dae-Jin1,Bressan Ray A.1

Affiliation:

1. Center for Plant Environmental Stress Physiology (J.I.K., A.S., J.B.J., P.M.H., R.A.B.) and Department of Horticulture and Landscape Architecture (J.J.B., A.S.M.), Purdue University, West Lafayette, Indiana 47906–2010; Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 (P.L., H.J.B.); and Environmental Biotechnology National Core Research Center and Division of Applied Li

Abstract

AbstractAuxin plays critical roles in many aspects of plant growth and development. Although a number of auxin biosynthetic pathways have been identified, their overlapping nature has prevented a clear elucidation of auxin biosynthesis. Recently, Arabidopsis (Arabidopsis thaliana) mutants with supernormal auxin phenotypes have been reported. These mutants exhibit hyperactivation of genes belonging to the YUCCA family, encoding putative flavin monooxygenase enzymes that result in increased endogenous auxin levels. Here, we report the discovery of fertile dominant Arabidopsis hypertall1-1D and hypertall1-2D (yucca6-1D, -2D) mutants that exhibit typical auxin overproduction phenotypic alterations, such as epinastic cotyledons, increased apical dominance, and curled leaves. However, unlike other auxin overproduction mutants, yucca6 plants do not display short or hairy root phenotypes and lack morphological changes under dark conditions. In addition, yucca6-1D and yucca6-2D have extremely tall (>1 m) inflorescences with extreme apical dominance and twisted cauline leaves. Microarray analyses revealed that expression of several indole-3-acetic acid-inducible genes, including Aux/IAA, SMALL AUXIN-UP RNA, and GH3, is severalfold higher in yucca6 mutants than in the wild type. Tryptophan (Trp) analog feeding experiments and catalytic activity assays with recombinant YUCCA6 indicate that YUCCA6 is involved in a Trp-dependent auxin biosynthesis pathway. YUCCA6:GREEN FLUORESCENT PROTEIN fusion protein indicates YUCCA6 protein exhibits a nonplastidial subcellular localization in an unidentified intracellular compartment. Taken together, our results identify YUCCA6 as a functional member of the YUCCA family with unique roles in growth and development.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3