Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots

Author:

Wang Rongchen1,Xing Xiujuan1,Crawford Nigel1

Affiliation:

1. Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, La Jolla, California 92093–0116

Abstract

Abstract Nitrate serves as a potent signal to control gene expression in plants and algae, but little is known about the signaling role of nitrite, the direct product of nitrate reduction. Analysis of several nitrate-induced genes showed that nitrite increases mRNA levels as rapidly as nitrate in nitrogen-starved Arabidopsis (Arabidopsis thaliana) roots. Both nitrite and nitrate induction are apparent at concentrations as low as 100 nm. The response at low nitrite concentrations was not due to contaminating nitrate, which was present at <1% of the nitrite concentration. High levels of ammonium (20 mm) in the growth medium suppressed induction of several genes by nitrate, but had varied effects on the nitrite response. Transcriptome analysis using 250 or 5 μ  m nitrate or nitrite showed that over one-half of the nitrate-induced genes, which included genes involved in nitrate and ammonium assimilation, energy production, and carbon and nitrogen metabolism responded equivalently to nitrite; however, the nitrite response was more robust and there were many genes that responded specifically to nitrite. Thus, nitrite can serve as a signal as well as if not better than nitrate.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3