Reduced Expression of Succinyl-Coenzyme A Ligase Can Be Compensated for by Up-Regulation of theγ-Aminobutyrate Shunt in Illuminated Tomato Leaves

Author:

Studart-Guimarães Claudia1,Fait Aaron1,Nunes-Nesi Adriano1,Carrari Fernando1,Usadel Björn1,Fernie Alisdair R.1

Affiliation:

1. Departments Willmitzer and Stitt, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany

Abstract

AbstractIncreasing experimental evidence suggests that the tricarboxylic acid cycle in plants is of greater importance in illuminated photosynthetic tissues than previously thought. In this study, transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the β-subunit of succinyl-coenzyme A ligase in either the antisense orientation or using the RNA interference approach, however, revealed little alteration in either photosynthesis or plant growth despite exhibiting dramatic reductions in activity. Moreover, the rate of respiration was only moderately affected in the transformants, suggesting that this enzyme does not catalyze a crucial step in mitochondrial respiration. However, metabolite and transcript profiling of these lines alongside enzyme and label redistribution experiments revealed that, whereas considerable activity of this enzyme appears to be dispensable, the reason for such a mild phenotype in extremely inhibited lines was an up-regulation of an alternative pathway for succinate production—that offered by the γ-aminobutyric acid shunt. When taken together, these data highlight the importance both of succinate production for mitochondrial metabolism and the interplay between various routes of its production. The results are discussed in the context of current models of plant respiration in mitochondrial and cellular metabolism of the illuminated leaf.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3